New device reduces hemostasis time following catheterization and improves efficiency

A new study reveals the use of a potassium ferrate hemostatic patch (PFHP) reduces the time to hemostasis for patients receiving cardiac catherization. The findings indicate a faster approach to removing the compression band used during the procedure, without compromising safety. Positive results of the STAT2 trial follow an initial pilot study and are being …

Cancer-linked mutation accelerates growth of abnormal stroke-causing brain blood vessels

Researchers have discovered an explanation for why cerebral cavernous malformations (CCMs)—clusters of dilated blood vessels in the brain—can suddenly grow to cause seizures or stroke. Specifically, they found that a specific, acquired mutation in a cancer-causing gene (PIK3CA) could exacerbate existing CCMs in the brain. Furthermore, repurposing an already existing anticancer drug showed promise in …

Draining brain’s debris enhances Alzheimer’s therapies in mice

Experimental Alzheimer’s drugs have shown little success in slowing declines in memory and thinking, leaving scientists searching for explanations. But new research in mice has shown that some investigational Alzheimer’s therapies are more effective when paired with a treatment geared toward improving drainage of fluid—and debris—from the brain, according to a study led by researchers …

Stress slows the immune response in sick mice

The neurotransmitter noradrenaline, which plays a key role in the fight-or-flight stress response, impairs immune responses by inhibiting the movements of various white blood cells in different tissues, researchers report April 28th in the journal Immunity. The fast and transient effect occurred in mice with infections and cancer, but for now, it’s unclear whether the …

Major advance enables study of genetic mutations in any tissue

For the first time, scientists are able to study changes in the DNA of any human tissue, following the resolution of long-standing technical challenges by scientists at the Wellcome Sanger Institute. The new method, called nanorate sequencing (NanoSeq), makes it possible to study how genetic changes occur in human tissues with unprecedented accuracy.

New model may explain the mystery of asymmetry in Parkinson’s disease

Parkinson’s disease (PD) is characterized by slowness of movement and tremors, which often appear asymmetrically in patients. The new model of PD described in this review article published in the Journal of Parkinson’s Disease may explain these perplexing asymmetrical motor symptoms and other known variations such as different degrees of constipation and sleep disorders.